Problem Sheet 7

Problem 1

Show that the following two characterizations of lattices $\Lambda \subseteq \mathbb{R}^n$ are equivalent.

- (a) Λ is a finitely generated subgroup such that the natural map $\mathbb{R} \otimes_{\mathbb{Z}} \Lambda \longrightarrow \mathbb{R}^n$ is an isomorphism.
- (b) Λ is a discrete subgroup such that \mathbb{R}^n/Λ is compact.

Problem 2

Let $K \subseteq \mathbb{R}$ be a real-quadratic field with discriminant D. The fundamental unit of K is defined to be the unique $\omega > 1$ such that $U_K = \{\pm 1\} \times \omega^{\mathbb{Z}}$.

(a) Let $u \in U_K$ with u > 1 and set $\epsilon := N_{K/\mathbb{Q}}(u) \in \{\pm 1\}$. Show that

$$u \geq \frac{(\sqrt{D} + \sqrt{D + 4\epsilon})}{2}$$

Hint: Use $|\operatorname{Disc}_{K/\mathbb{Q}}(1, u)| \ge D$.

- (b) Show that if there is a prime $p \mid D$ with $p \equiv 3 \mod 4$, then there is no $u \in U_K$ with $N_{K/\mathbb{O}}(u) = -1$.
- (c) Find the fundamental units of $\mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt{3})$ and $\mathbb{Q}(\sqrt{5})$.

Problem 3

Let $K = \mathbb{Q}(\zeta_p)$ with p an odd prime and set $K^+ := K(\zeta_p + \zeta_p^{-1})$. As usual, U_K and U_{K^+} denote the integral units of K and K^+ .

- (a) For $u \in U_K$, show that u/\bar{u} is a root of unity.
- (b) Show further that $u/\bar{u} = \zeta_p^k$ for some $k \in \mathbb{Z}$ (and not $u/\bar{u} = -\zeta_p^k$ for some k.)
- (c) Conclude that $U_K = U_{K^+} \times \langle \zeta_p \rangle$.

Problem 4

Let $\zeta_5 = e^{2\pi i/5}$ and $u = -(\zeta_5^2 + \zeta_5^3)$.

- (a) Show that u is quadratic over \mathbb{Q} and determin the field $\mathbb{Q}(u)$.
- (b) Prove that the units of $\mathbb{Q}(\zeta_5)$ are give by $\pm \zeta_5^k (1+\zeta_5)^h$ with $0 \le k \le 4$ and $h \in \mathbb{Z}$.
- (c) Determine the regulator of $\mathbb{Q}(\zeta_5)$.